ⒶⓎⓊⒹⓎⒶ ⓅⓊⓉⓇⒾ ⓅⓇⒶⓉⒾⓌⒾ

˙·٠•●♥ Ƹ̵̡Ӝ̵̨̄Ʒ ♥●•٠·˙˙·٠•●♥ Ƹ̵̡Ӝ̵̨̄Ʒ ♥●•٠·˙˙·٠•●♥ Ƹ̵̡Ӝ̵̨̄Ʒ ♥●•٠·˙˙·٠•●♥ Ƹ̵̡Ӝ̵̨̄Ʒ ♥●•٠·˙˙·٠•●♥ Ƹ̵̡Ӝ̵̨̄Ʒ ♥●•٠·˙˙·٠•●♥ Ƹ̵̡Ӝ̵̨̄Ʒ ♥●•٠·˙



1. Head-Up Display

              Head-up display, atau disingkat HUD, adalah setiap tampilan yang transparan menyajikan data tanpa memerlukan pengguna untuk melihat diri dari sudut pandang atau yang biasa. Asal usul nama berasal dari pengguna bisa melihat informasi dengan kepala “naik” (terangkat) dan melihat ke depan, bukan memandang miring ke instrumen yang lebih rendah.



                 HUD pertama kali diperkenalkan pada tahun 1950-an, dengan adanya teknologi reflektif gunsight pada perang dunia ke dua. Saat itu, suatu tembakan dihasilkan dari sumber listrik yang diproyeksikan ke sebuah kaca. Pemasangan proyektor itu biasanya dilakukan pada bagian atas panel instrumen di tengah daerah pandang pilot, antara kaca depan
dan pilot sendiri.





             Dengan menggunakan reflektif gunshight pada pertempuran udara, pilot harus “mengkalibrasi” pandangannya secara manual. Hal ini dilakukan dengan memasukkan lebar sayap target pada sebuah penyetelan roda yang diikuti dengan penyesuaian mata, sehingga target yang bergerak dapat disesuaikan dengan bingkai yang diarahkan kepadanya. Dengan melakukan hal tersebut, maka hasilnya akan terjadi kompensasi terhadap kecepatan, penembakan peluru, G-load, dll.


                Pada tahun 1950-an, gambar dari efletif gunsight diproyeksikan ke sebuah CRT (Cathode Ray Tube) yang dikendalikan oleh komputer yang terdapat pada pesawat. Hal inilah yang menandai kelahiran teknologi HUD modern. Komputer mampu mengkompensasi akurasi dan menyesuaikan tujuan dari kursor secara otomatis terhadap faktor, seperti range, daya percepatan, tembakan peluru, pendekatan target, G-load, dll.

             Penambahan data penerbangan terhadap tanda bidikan, memberikan perananan kepada HUD sebagai pembantu pilot dalam melakukan pendaratan, serta membantu pilot di dalam pertempuran udara. Pada tahun 1960-an, HUD digunakan secara ekstensif dalam melakukan pendaratan. HUD menyediakan data-data penerbangan penting kepada pilot, sehingga pilot tidak perlu melihat peralatan pada bagian dalam dari panel.

          
                Penerbangan komersial HUD pertama kali diluncurkan pada tahun 1980-an. HUD pertama kali digunakan oleh Air Inter pada pesawat MD-80. Namun, masih tergantung pada FD pesawat untuk bimbingan dan hanya bekerja sebagai repeater informasi yang ada. Pada tahun 1984, penerbangan dinamika Rockwell Collins sudah berkembang dan mendapatkan sertifikasi HUD “standalone” yang pertama sebagai pesawat komersial, yang disebut HGS (Head Up Guidance System). Sistem “stand alone” ini mendatangkan kesempatan untuk mengurangi waktu lepas landas dan pendaratan minimum. Pada tahun 1984, FAA menyetujui pendaratan CAT IIIA tanpa menyediakan pemasangan sistem autoland atau autothrottle pada pesawat yang dilengkapi dengan HGS.





Teknologi HUD
CRT (Cathode Ray Tube)
           Hal yang sama untuk semua HUD adalah sumber dari gambar yang ditampilkan, CRT, yang dikemudikan oleh generator. Tanda generator mengirimkan informasi ke CRT berbentuk koordinat x dan y. Hal itu merupakan tugas dari CRT untuk menggambarkan koordinat senagai piksel, yaitu grafik. CRT membuat piksel dengan menciptakan suatu sinar elektonil, yang menyerang permukaan tabung (tube).
Refractive HUD


             Dari CRT, sinar diproduksi secara paralel dengan sebuah lensa collimating. Sinar paralel tersebut diproyeksikan ke kaca semitrasnparan (kaca gabungan) dan memantul ke mata pilot. Salah satu keuntungan dari reaktif HUD adalah kemampuan pilot untuk menggerakkan kepalanya dan sekaligus melihat gambar yang ditampilkan pada kaca gabungan.
Reflective HUD


            Kerugian dari HUD reflektif adalah akibatnya pada besarnya tingkat kompleksitas yang terlibat dalam meproduksi penggabungan lekungan dari segi materi dan rekayasa. Keuntungan besarnya adalah kemampuan pada peningkatan tanda brightness (terang), meminimalisir redaman cahaya dari pemandangan visual eksternal dan adanya kemungkinan untuk menghemat ruang di kokpit, karena lensa collimating yang tidak diperlukan.


System Architecture
            HUD komputer mengumpulkan informasi dari sumber – sumber seperti IRS (Inertial Reference System), ADC (Air Data Computer), radio altimeter, gyros, radio navigasi dan kontrol kokpit. Diterjemahkan ke dalam koordinat x dan y, komputer HUD selanjutnya akan menyediakan informasi yang dibutuhkan untuk hal apa yang akan ditampilkan pada HUD ke generator simbol. Berdasarkan informasi ini, generator simbol menghasilkan koordinat yang diperlukan pada grafik, yang akan dikirmkan ke unit display (CRT) dan ditampilkan sebagai simbol grafik pada permukaan tabung.
Kebanyakan  HUD militer mudah memberikan atau melewatkan isyarat kemudi FD melalui generator simbol. HUD memperhitungkan isyarat kemudi pada komputer HUD dan hal tersebut membuatnya sebagai sistem ‘standalone’. Sipil HUD merupakan fail-passive dan mencakup pemeriksaan internal yang besar mulai dari data sampai pada simbol generator. Kebanyakan perselisihan perhitungan dirancang untuk mencegah data palsu tampil.
Display Clutter


          Salah satu perhatian penting dengan simbologi HUD adalah kecenderungan perancang untuk memasukkan data terlalu banyak, sehingga menghasilkan kekacauan tampilan. Kekacauan tampilan ini jauh dari eksklusif untuk HUD, tetapi hal ini sangat kritis  pada saat melihat ke arah tampilan. Setiap simbologi yang tampil pada sebuah HUD harus melayani atau memiliki sebuah tujuan dan mengarahkan peningkatan performa. Kenyataannya, bukan piksel tunggal yang dapat menerangi kecuali dia secara langsung mengarahkan pada penigkatan. Prinsip yang diterapkan pada perancangan HUD adalah ‘ketika dalam keraguan, tinggalkan saja’.


Generasi HUD


HUD terbagi menjadi empat generasi yang mencerminkan teknologi yang digunakan untuk menghasilkan gambar.
§  Generasi Pertama-menggunakan CRT untuk menghasilkan sebuah gambar pada layar fosfor, memiliki kelemahan dari lapisan layar fosfor merendahkan dari waktu ke waktu. Mayoritas HUDs dalam operasi hari ini adalah dari jenis ini.
§  Generasi Kedua-Gunakan sumber cahaya keadaan padat, misalnya LED , yang dimodulasi oleh sebuah layar LCD untuk menampilkan gambar. Sistem ini tidak memudar atau membutuhkan tegangan tinggi sistem generasi pertama. Sistem ini pada pesawat komersial.
§  Generasi Ketiga-menggunakan pandu gelombang optik untuk menghasilkan gambar secara langsung di Combiner daripada menggunakan sistem proyeksi.
§  Generasi Keempat-Gunakan laser scanning untuk menampilkan gambar dan bahkan citra video pada media transparan yang jelas.
Baru mikro-tampilan teknologi pencitraan sedang diperkenalkan, termasuk liquid crystal display (LCD), Liquid Crystal Of Sylicon (LCoS), mikro-cermin digital (DMD), dan organic light-emitting diode(OLED).

 
 

Sumber :

0 komentar:

Posting Komentar

GUNADARMA

My Profil

Foto saya
Ayudya Putri Pratiwi NPM : 14109209 Kelas : 4KA25 Fakultas Ilmu Komputer dan Teknologi Informasi Jurusan : Sistem Informasi (2009) UNIVERSITAS GUNADARMA

Friends